Cinétique du Solide A_Roux

Cinétique du Solide

Compétences attendues :

v' Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables.

1 Notion de solide
1.1. Définitions et hypotheses

o Lesolide S est un ensemble indéformable de « points matériels » si :

d||oP
Y(Q, P) bipoint de S?, (M) =0
dt R

e Le solide est homogéne si la masse volumique ne varie pas quel que soit le point
ou I'on se place. La masse du solide est conservative si la masse ne varie pas avec le temps.

v(Q,Pes’  p(P) = p(Q), (d‘;—(tm)R =0
g

Remarque : La majeure partie des résultats est obtenue par extension au solide des résultats connus
pour un pointen intégrant sur le volume. Ces démonstrations font intervenir des fonctions
dépendantes du temps telles que la vitesse et |I'accélération.

1.2. Centre de masse / centre de gravité

1.2.1. Expérimentalement

Comment déterminer expérimentalement le centre de gravité d’un casque d’avion de chasse ?

On suspend un casque d’avion de chasse a un fil, fixé successivement en A et B.
On marque ainsi la continuité du fil par deux droites qui sont sécantes en un point.
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Le casque n’est soumis qu’a deux forces : la tension du fil et son propre poids, s’appliquant
en ce fameux point de concours : le centre de gravité.

1.2.2. Analytiquement

e Définition générale :

Considérons un systéme de n points matériels P; de masse m;.

Le centre de masse G de cet ensemble est défini par le barycentre des points P; affectés
— —_ _— —

des coefficients m;, c’est-a-dire : MOG = Y,i-; m;OP, ou Z?:l m;GP, = 0.

(O désigne un point quelconque et la masse M est égale a Y1, m;).

Pour un solide, au lieu d’utiliser cette somme discontinue, on a recours a une somme intégrale.
Pour cela, on découpe le solide en éléments dm arbitraires centrés sur les points P puis en faisant
tendre dm — 0, on obtient a la limite :

Mﬁﬁ = fSO_P’dm ou fsfﬁdm = _6
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e Coordonnées du centre de masse :

On suppose un repére orthonormé (0, X, y, Z). L’expression précédente permet de définir le vecteur

position OG. Pour obtenir les coordonnées du centre de masse, il suffit de projeter la relation
vectorielle sur les axes de la base du repere.

Exemple : On note 0G = xg% + y;J + 257 et OP = x% + yy + zZ

Jgx.dm . _ Jzy.dm .

Jsz.dm
v V6T Tum 46T Tue)

dou  Xg =

Remarque : Si un solide admet un plan, un axe ou un centre de symétrie droite ou oblique,
son centre de masse se trouve dans le plan, sur cet axe ou au centre de symétrie.

1.2.3. Détermination du centre de masse d’un ensemble de solides S;

Si un ensemble de solides = de masse M est constitué de n solides S; de masse m; (M = Y-, m;),
il est possible de déterminer la position du centre de masse G de cet ensemble de solides
en concentrant les masses m; aux centres de masse G; des solides S; correspondant, soit :

(C™,m)0G = MOG = Y™, m; 0G,  ou " m; GG, =0

Exemple : Calculer le centre de gravité dans le plan (Xy,7V,) du systéme bielle/manivelle/piston,
en prenant comme origine le point O et en exprimant les coordonnées en fonction de I'angle
de rotation 6.

Solide 1 (manivelle) : m; et ||E4’|| =1
:mzet |[4B|| = I,
Solide 3 (piston) : ms et ||B_C)|| =l
Le centre de gravité de chaque solide est confondu avec le centre géométrique des piéces.
On rappelle la loi E/S du mécanisme : x5 = l;cos6 + m

et sin(f) =

xg—L,cos (0)
Ly

Ly sin(0)

On donne aussi : cos(B) = -
2

Reéel Modele plan
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l l x
X1 = %COS ) Xe2 = EICOS(@) + 78 {x63 = Xp +l;3

I . Iy .
Y61 = ;lsm 6) Y62 = Elsm @) Y63 =0

1 ll m, l3
(xG R —— ((my + mz)icos(e) + (m3 + 7) xXp +mg 5)
my +m, L .
=— 1 2 (=sin(@
Y6 my +m, +msy (2 sin(6))

1 L ms 2 P L3
Xg = m((ml + mZ)Ecos(H) + (m3 + 7) (lycosO + |15 — 11°sin“0) + m3 5)

m; +m, L .
== Y (— 9
| Y6 = o o G SO

1.3. Etude d’une ligne matérielle plane

1.3.1. Centre de masse

- L. . AM . .
Nous définissons une masse linéique par u = Al%moA—l avec pour les solides homogenes : L = cste.
-

La section du solide (S) est de dimensions faibles par rapport a sa longueur. La définition générale
du centre de masse est : LOG = fL 0Pdl ou fL GPdl = 0.

1.3.2. Théoreme de Guldin (Th n°1)

Le théoréeme de Guldin (n°1) permet de déterminer le centre de masse (ou centre d’inertie)
d’une ligne plane.

Soit une courbe plane (C) de longueur L appartenant au plan (0,%,y) et ne coupant pas I'axe
0,9).

Soit G le centre de masse de la courbe C.
Par définition : M(2)0G = fCO_ﬁdm ou encore, LOG = Je OPdl

On projette I'équation sur I'axe (0,X) : Lx; = fc xpdl



Cinétique du Solide A_Roux

On fait tourner la ligne autour de I'axe (0, y) et on regarde la surface engendrée :
2m.L.x; = J 21 xp. dl
Cc

Dans la rotation autour de cet axe, I'élément d/ de (C) centré sur le point P engendre la surface
ds = 2m.x, et si on integre cet élément de surface sur toute la longueur de la courbe C,
on obtient la surface engendrée par laligneC: S = fc ds.

On en déduit donc:

2. L.xg = f 2. x,.dl =S
c

Th de Guldin : L’aire de la surface engendrée par une ligne C, de longueur L, tournant autour
d’un axe A situé dans son plan et qui ne le coupe pas, est égal au produit de la longueur L
par la circonférence décrite par le centre de masse G de la courbe C.

Exemple : Centre de masse d’une ligne matérielle homogéne demi-circulaire (centre O, rayon R).

S ATR? . 2R
Nous avons x; = Py soit Xg =—

Exemple : Détermination de la surface totale d’un cone :

Montrer que S;q; = m.R.VR? + H? et donc que S.5p. = T.R.(VR? + H2 + R)

1.4. Etude d’une surface matérielle

1.4.1. Centre de masse

(g s . . AM .
Nous définissons une masse surfacique o = Alémo 4 Pour une plague homogéne G = cste.
-

Pour une surface matérielle, nous considérons que |'épaisseur est négligeable par rapport
aux autres dimensions. Nous obtenons la relation :

S.0G = fsm’)ds ou encore fsﬁ)ds = 0.
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1.4.2. Théoreme de Guldin (Th n°2)

Le théoréme de Guldin (n°2) permet de déterminer le centre de masse (ou centre d’inertie)
d’une surface plane.

Soit une surface plane (S) de surface S appartenant au plan (0,X,y) et ne coupant pas I'axe
0,9).

Soit G le centre de masse de la surface S, par définition :
M(2)0G = [,0Pdm ouencore,  S.0G = [ OPds
On projette I'équation sur I'axe (0,%) : S.x; = fs xpds

En procédant de la méme facon que précédemment pour le théoréme n°1,
on obtient :

2m.8.xg = [(2m.xp.ds =V

Th de Guldin : Le volume engendré par la surface S, de surface S, tournant autour d’un axe A
situé dans son plan et qui ne le coupe pas, est égal au produit de la surface S
par la circonférence décrite par le centre de masse G de la surface S.

Exemple : Détermination du volume d’un cone :

Montrer que Vegpe = %.n.RZ.H

On peut également le démontrer par intégration :

Veome = J, .d0.dr.dz = [ [ [2"r.d0.dr.dz = .. R%.H

avec gy, = g.z (car la borne d’intégration du rayon dépend de I'altitude du disque).

Ou avec le théoréeme de Guldin n°2 :

IR

R.H
Veone = 2m.S. x¢ = 2m. (—)

1
=—.m.R%H
) T

R
3 3
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2. Moment d’inertie autour d’un axe

2.1. Moment d’inertie d’un solide

-

V4

e ParrapportaunaxeA:

H = projection orthogonale de MeS sur A = (0,u)
I1(S,A) = fmizdm = fdzdm = Ip,(S)
s s

d = distance de M a l'axe A

e Parrapport a un point A:

14(5) = f AM?dm
S

Soit M de coordonnées x, y, z dans le repére (0, X, ¥, Z).

Ip($) = [((x* +y* +2")dm Iox(S) = [((* +2z")dm

Remarque : Unité : kg.m?

Si le moment d'inertie, proportionnel au carré de la distance a l'axe de rotation, est faible,
le solide atteint rapidement sa vitesse de rotation nominale autour de cet axe = nécessité de diminuer
I'inertie des solides en rotation (moteurs, ...cf patineurs). L'inertie peut étre utile pour réguler
des mouvements (volants d'inertie).
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Exemple 1 : Déterminer lo, pour le cylindre de révolution de rayon R, de hauteur h et de masse m.

[p,(S) = fs(x2 + y?)dm = coordonnées polaires

= fsrzdm avec dm = pdv = p2zxrhdr

(en regroupant tous les points M a méme distance r de Oz)

4
= J[;p2nrihdr = 211th7:,> Ip, = mR;

Exemple 2 : Déterminer le moment d'inertie d'une sphére de rayon R, de masse m par rapport
a son centre O puis par rapport a un diameétre A quelconque.

Iy = fs‘r'zdm avecdm = pdv = pd(%nr3) = p4nr?dr

. R> 3
lp = | p4nr*dr = pAn— = —mR?
s 5 5

Or IA = on = /oy = Ioz pCII’ Symétr/e et on + /oy + Ioz = 2 IO = 3 IA d'Ol:I IA = = mRz

2.2.Théoreme de Huygens

Soit un axe U passant par le centre de gravité G d'un solide S et un axe paralléle a la distance d passant
par le point A. On cherche la relation entre lgu(S) et lau(S).

L, (S) = fsmzdm = fs(m() + KM)2dm (par définition)

Ly (S) = f HR2dm + f KM2dm + 2. f HE. KMdm
S S )
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L, (8) = md? + I5,(S) + 2. j HK.KMdm
5
(définitions précédentes + figure + KM = KG + GM)

L, (8) = md? + 15,(S) + Z.IW.K—G)dm + Z.IW.de
5 5

Oor  HK.KG sont orthogonaux et  2.[ HK.GMdm =2.d.% [[GMdm =0

(par définition du centre de gravité).

2.3. Matrice d’inertie (ou tenseur d’inertie) d’un solide en Q
L'opérateur d’inertie et la matrice qui lui est associée permettent de caractériser la répartition

de masse d’un solide.

On se donne dans le repére R associé au solide les coordonnées des vecteurs considérés :

QP =x.i+y.y+27 U=p.x+qy+r.z

Cette matrice est ici définie dans un repere R associé au solide.

f »?+z5)dm - f xydm - f xzdm
5 5 5
A —-F -—-E
[IQ(S)]R - —fxydm f(x2 + z%)dm —fyzdm =|—-F B =D
s s s —E —-D C lgp
- f xzdm - f yzdm f (x* + y*)dm
5 5 5

ok
Notation :

Inertie
/ Caractérise

/ le solide

[I o (S )] R
e "o
I Exprimée
Matrice dans le repére R
Calculée
au point O

Dans la plupart des cas, on pourra omettre la notation avec le repére R pour alléger les notations.
Remarque : Si on demande de calculer E, il n’y a pas de signe « moins ».
On montre que le moment d'inertie du solide S par rapport a un axe U passant par Q s'écrit :

Attention : La matrice d’inertie d’un solide est calculée en un point et dans un repére lié au solide.
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2.4. Particularités de I'opérateur

2.4.1. Conventions

AvecR=(Q,X,y,2):

e A, BetCsontles moments d'inertie par rapport aux axes (Q, %), (Q,y ) et (Q,Z).
e D, E et Fsont les produits d’inerties par rapport aux plans (Q,y,Z), (Q,%, Z), (Q, X,y ).

2.4.2. Extensions

On peut étendre la notion de moment d’inertie en le définissant par rapport a un élément géométrique
quelconque. Ce qui permet d’écrire en considérant, par exemple, que I(S/(Q,y, %)) = fs x*dm

et1(S/(Q.%,2) = [,y*dm
1(5/(Q.%,2)) +1(5/(Q,3,2)) = 1(5/(Q.9)) = C

La somme des moments d’inertie par rapport a deux plans orthogonaux permet d’obtenir le moment
d’inertie par rapport a la droite définie par I'intersection de ceux-ci.

Ou encore :

I1(5/(Q,%,2)) +1(S/(Q,5,2) + 1(S/(Q,%,) = 1(S/Q) =% (A+B+0)

La somme des moments d’inertie par rapport a trois plans orthogonaux permet d’obtenir le moment
d’inertie par rapport au point défini par I'intersection de ceux-ci.

2.4.3. Reperes particuliers

Compte tenu de sa définition, la matrice d'inertie d'un solide est symétrique et ses vecteurs propres
sont orthogonaux.

Il existe donc une base orthonormée dans laquelle la matrice est diagonale. Associée au point Q,
cette base est appelée Repére Principal d'Inertie.

SiQ =G, onirajusqu'a parler de Repére Central d'Inertie

Lorsqu'un solide posséde un élément de symétrie (plan, droite, point), cet élément fait partie
du repeére principal d'inertie. De plus, le CdG (G) appartient a cet élément de symétrie.

La matrice d'inertie est bien sdr plus facile a calculer dans un repére qui fait apparaitre les symétries.

10
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2.5. Propriétés de la matrice d’inertie - Cas particuliers de solides

Un Plan de symétrie (Q,X,y) : :

L'axe perpendiculaire a ce plan (donc Z) est principal d'inertie.

A —-F 0
D=0etE=0 ->|—-F B 0
0 0 C

Qxyz

Deux Plans de symétrie (Q,%,y) et (Q,%,Z7) :

A 0 O
D=OetE=0etF=0—>|0 B O
O O C Qxyz

Un axe de Révolution (Q, Z) :

Ny

A=BetD=0etE=0Oet F=0 —>

<

A 0 O
0 4 0
Qz

0 0 C

>y

A+B=2A=ZB=C+2.fzzdm=fr2dm+2.fzzdm
5 s s

Un centre de symétrie sphérique (G forcément) :

A 0 0
A=B=CetD=0etE=0etF=0 [0 A 0
0 0 alg

A+B+(C=34A=3B=3C= 2.fr2dm
s

Remarques :

e Le repére dans lequel est exprimé la matrice d’inertie est trés important.

A_Roux

e Lamatrice a laméme forme (mais pas forcément les mémes valeurs) quel que soit le point
de l'axe ou elle est calculée et le moment d'inertie autour de I'axe est constant

quel que soit le point de calcul tant que I’on reste sur I'axe.

11
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2.6. Les solides élémentaires

Parallélépipéde en G

3 plans de symétrie (D =E=F =0).

S
Parallélépipéde > H? + 12 0 0
T M= H+e 0
L — 0 M= |, p+e
X 0 0 12 g
Cylindreen G
@ Axe de révolution G,: A=BetD=E=F=0.
S
Z R? H? 0 0
M(T + E) R? H? 0
X 0 0 2 G,z

Pour tous les solides de révolution : A=Bet A+B=2A=2B=C+2 [ z’dm

On intégre en cylindrique avec x> + y>=r? et dV = r dr d0 dz

Cone en O (sommet)

a Hauteur H sur Z et base circulaire de rayon R.
3

H . Utiliser des disques d’épaisseur dr dont le rayon varie
Z avec z.
= > Y > M(R? + 4H?) 0 0
A 20 0
Céne VO v X 20 —M(R?+4H?) 3
0 0 10 Gz
Sphére en G
Rayon R constant et épaisseur négligeable
—
Z CalculenG:A+B+C=3A=2.[ r’dm=2MR?
2 0 0
—_— _ 2
> Y 3MR , 0
X =MR* >
0 3 _MRZ
0 0 3 G
Bouleen G
Q‘ Rayon R (Idem Sphere et utiliser une sphére creuse d’épaisseur dr).
—
z 2 0 0
Boule — > MR?
> Y 0 5 Zure
X 0 0 5 G

12
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2.7.Théoreme de Huygens

Ce théoreme donne la relation existante entre [I;(S)], matrice d'inertie du solide S au centre
de gravité G, et [I,(S)], matrice d'inertie en un point Q quelconque tel que 0G=axX+bjy+c?

bZ + C2 —ab —ac
1) =11 +m| —ab a?+c¢* —bc
—ac —bc  a? + b?

Donc, la matrice d'inertie en un point quelconque Q est la somme de la matrice d'inertie exprimée
en G et de la matrice d'inertie en G "du point Q affecté de la masse totale".

Remargue : Pour mémoriser, on peut se rappeler de la formule suivante :

[1o()] = Ue($)] +m [QG?]
ATTENTION : Cette relation n’est valable qu’entre G et un autre point !!!

Remarqgue : Le déplacement de matrice ne s’utilise que pour pouvoir trouver la matrice d’un solide
constitué de volumes élémentaires ET/OU dans le cas ou I'on déplace en un point du solide qui reste
fixe au cours du mouvement.

Exemple :

2.8.Cas d’un solide complexe composé de solides élémentaires

Il peut étre intéressant dans certains cas de faire une partition d’un solide en solides élémentaires
dont les matrices d’inertie sont simples a calculer ou connues.

Z
51

2=SI+SZ_SS

o)1= [To(S1)]r+[10(S2)]Ir—[T0(53)]R

Attention : Il est possible de sommer les matrices d’inertie au méme point et dans le méme repére.

13
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3. Torseur cinétique (quantités de mouvements)

{cs

, f V(P € S/R,) dm(P) , o
Rc(S/Ry) } J Résultante cinétique

f Q—P)/\ m dm(P) Moment cinétique en Q
S

/Ro)} = {G(Q.S/Rg)

3.1. Résultante cinétique (résultante du torseur)

R.(S/Ry) = Mg V(G € S/R,)

R(S/Ry) ne dépend que de G, c’est un invariant vectoriel, caractéristique d'une résultante de torseur.

1.1. Moment cinétigue (moment du torseur)

o(A,S/R;) = AB AR.(S/R,) + (B,S/R;)

a(Q,S/Ry) est bien un champ de moment d'un torseur.

Ou encore, avec une forme faisant intervenir la matrice d’inertie :

5(Q,S/Rg) = MsQG AV(Q € S/Ry) + [Io($)](Qs/r,)

Cas particuliers :

Q fixedans R; 2 0d(Q,S/Ry) = [IQ(S)](.QS/RQ)

G = Q> 3(G,S/R,) = Us(S)]@sx,)

Remarques :

Dans la plupart des calculs, nous essaierons de nous placer au point G pour des soucis
de simplification de I'expression du moment cinétique

Dans le cas ou Q appartient au solide et est fixe, il faudra utiliser les méthodes
précédentes pour les changements de point (Théoréme de Huygens, ...)

Si le moment cinétique doit étre déterminé en A alors que I'opérateur d’inertie est donné
en Q: on calcule le moment cinétique la ou on connait I'opérateur d’inertie, ici en Q
puis on réduit le moment cinétique en A par la relation de moment.
On obtient alors la relation générale suivante :

a(A,S/Ry) = MsQG AV(Q € S/Ry) + [19(S)](Qs/r,) + AQ A MsV(G € S/R,)

14



