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Cinétique du Solide 
 

Compétences attendues : 

✓ Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables. 

1 Notion de solide 

1.1. Définitions et hypothèses 
 

• Le solide S est un ensemble indéformable de « points matériels » si :  

(Q , P) bipoint de S²,       (
𝑑‖𝑄𝑃⃗⃗ ⃗⃗  ⃗‖

𝑑𝑡
)
𝑅𝑔

= 0 

 

• Le solide est homogène si la masse volumique ne varie pas quel que soit le point  

où l’on se place. La masse du solide est conservative si la masse ne varie pas avec le temps. 

 

 (Q , P)S2,      𝜌(𝑃)  =  𝜌(𝑄),        (
𝑑𝜌(𝑃)
𝑑𝑡

)
𝑅𝑔
= 0 

Remarque : La majeure partie des résultats est obtenue par extension au solide des résultats connus 

pour un point en intégrant sur le volume. Ces démonstrations font intervenir des fonctions 

dépendantes du temps telles que la vitesse et l’accélération.  

 

1.2. Centre de masse / centre de gravité 

1.2.1. Expérimentalement 
 

Comment déterminer expérimentalement le centre de gravité d’un casque d’avion de chasse ? 

On suspend un casque d’avion de chasse à un fil, fixé successivement en A et B.  

On marque ainsi la continuité du fil par deux droites qui sont sécantes en un point.  
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Le casque n’est soumis qu’à deux forces : la tension du fil et son propre poids, s’appliquant  

en ce fameux point de concours : le centre de gravité. 

 

 

1.2.2. Analytiquement 
 

• Définition générale : 

Considérons un système de n points matériels Pi de masse mi.  

 

Le centre de masse G de cet ensemble est défini par le barycentre des points Pi affectés  

des coefficients mi, c’est-à-dire : 𝑀𝑂𝐺⃗⃗⃗⃗  ⃗ = ∑ 𝑚𝑖𝑂𝑃𝑖⃗⃗ ⃗⃗ ⃗⃗ 𝑛
𝑖=1   ou ∑ 𝑚𝑖𝐺𝑃𝑖⃗⃗⃗⃗⃗⃗ = 0⃗ 𝑛

𝑖=1 . 

(O désigne un point quelconque et la masse M est égale à ∑ 𝑚𝑖
𝑛
𝑖=1 ).  

Pour un solide, au lieu d’utiliser cette somme discontinue, on a recours à une somme intégrale.  

Pour cela, on découpe le solide en éléments dm arbitraires centrés sur les points P puis en faisant 

tendre dm → 0, on obtient à la limite :  

𝑴𝑶𝑮⃗⃗⃗⃗⃗⃗ = ∫ 𝑶𝑷⃗⃗⃗⃗⃗⃗ 𝒅𝒎
 

𝑺
     ou ∫ 𝑮𝑷⃗⃗⃗⃗⃗⃗ 𝒅𝒎

 

𝑺
= 𝟎⃗⃗  
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• Coordonnées du centre de masse : 

On suppose un repère orthonormé (𝑂, 𝑥 , 𝑦 , 𝑧 ). L’expression précédente permet de définir le vecteur 

position 𝑂𝐺⃗⃗⃗⃗  ⃗. Pour obtenir les coordonnées du centre de masse, il suffit de projeter la relation 

vectorielle sur les axes de la base du repère.  

Exemple : On note 𝑂𝐺⃗⃗⃗⃗  ⃗ = 𝑥𝐺𝑥 + 𝑦𝐺𝑦 + 𝑧𝐺𝑧   et   𝑂𝑃⃗⃗⃗⃗  ⃗ = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧  

d’où   𝑥𝐺 =
∫ 𝑥.𝑑𝑚
 
Σ

𝑀(Σ)
   ;  𝑦𝐺 =

∫ 𝑦.𝑑𝑚
 
Σ

𝑀(Σ)
   ;    𝑧𝐺 =

∫ 𝑧.𝑑𝑚
 
Σ

𝑀(Σ)
  . 

Remarque : Si un solide admet un plan, un axe ou un centre de symétrie droite ou oblique,  

son centre de masse se trouve dans le plan, sur cet axe ou au centre de symétrie. 

 

1.2.3. Détermination du centre de masse d’un ensemble de solides Si 

 

Si un ensemble de solides  de masse M est constitué de n solides Si de masse mi (𝑀 = ∑ 𝑚𝑖
𝑛
𝑖=1 ),  

il est possible de déterminer la position du centre de masse G de cet ensemble de solides  

en concentrant les masses mi aux centres de masse Gi des solides Si correspondant, soit : 

(∑ 𝑚𝑖
𝑛
𝑖=1 )𝑂𝐺⃗⃗⃗⃗  ⃗ = 𝑀𝑂𝐺⃗⃗⃗⃗  ⃗ = ∑ 𝑚𝑖

𝑛
𝑖=1 𝑂𝐺𝑖⃗⃗⃗⃗⃗⃗  ⃗  ou  ∑ 𝑚𝑖

𝑛
𝑖=1 𝐺𝐺𝑖⃗⃗ ⃗⃗ ⃗⃗  = 0⃗  

 

Exemple : Calculer le centre de gravité dans le plan (𝑥 0, 𝑦0⃗⃗⃗⃗ ) du système bielle/manivelle/piston,  

en prenant comme origine le point O et en exprimant les coordonnées en fonction de l’angle  

de rotation 𝜃. 

Solide 1 (manivelle) : m1 et ‖𝑂𝐴⃗⃗⃗⃗  ⃗‖ = 𝑙1 

Solide 2 (bielle) : m2 et ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖ = 𝑙2 

Solide 3 (piston) : m3 et ‖𝐵𝐶⃗⃗⃗⃗  ⃗‖ = 𝑙3 

Le centre de gravité de chaque solide est confondu avec le centre géométrique des pièces. 

On rappelle la loi E/S du mécanisme : 𝑥𝐵 = 𝑙1𝑐𝑜𝑠𝜃 + √𝑙2
2 − 𝑙1²𝑠𝑖𝑛²𝜃 

On donne aussi : cos(𝛽) =
𝑥𝐵−𝐿1cos (𝜃)

𝐿2
  et sin(𝛽) = −

𝐿1 sin(𝜃)

𝐿2
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{
𝑥𝐺1 =

𝑙1

2
cos (𝜃)

𝑦𝐺1 =
𝑙1

2
sin (𝜃)

  {
𝑥𝐺2 =

𝑙1

2
cos(𝜃) +

𝑥𝐵

2

𝑦𝐺2 =
𝑙1

2
sin (𝜃)

  {
𝑥𝐺3 = 𝑥𝐵 +

𝑙3

2

𝑦𝐺3 = 0
 

 

{
 

 𝑥𝐺 =
1

𝑚1 +𝑚2 +𝑚3
((𝑚1 +𝑚2)

𝑙1
2
cos(𝜃) + (𝑚3 +

𝑚2

2
)𝑥𝐵 +𝑚3

𝑙3
2
)

𝑦𝐺 =
𝑚1 +𝑚2

𝑚1 +𝑚2 +𝑚3
(
𝑙1
2
sin(𝜃))

 

{
 
 

 
 𝑥𝐺 =

1

𝑚1 +𝑚2 +𝑚3
((𝑚1 +𝑚2)

𝑙1
2
cos(𝜃) + (𝑚3 +

𝑚2

2
) (𝑙1𝑐𝑜𝑠𝜃 + √𝑙2

2 − 𝑙1²𝑠𝑖𝑛²𝜃) + 𝑚3

𝑙3
2
)

𝑦𝐺 =
𝑚1 +𝑚2

𝑚1 +𝑚2 +𝑚3
(
𝑙1
2
sin(𝜃))

 

1.3. Etude d’une ligne matérielle plane 

1.3.1. Centre de masse 

 

Nous définissons une masse linéique par 𝜇 = lim
Δ𝑙→0

∆𝑀

∆𝑙
 avec pour les solides homogènes :  = cste. 

La section du solide (S) est de dimensions faibles par rapport à sa longueur. La définition générale  

du centre de masse est : 𝐿𝑂𝐺⃗⃗⃗⃗  ⃗ = ∫ 𝑂𝑃⃗⃗⃗⃗  ⃗𝑑𝑙
 

𝐿
   ou  ∫ 𝐺𝑃⃗⃗⃗⃗  ⃗𝑑𝑙 = 0⃗ 

 

𝐿
. 

 

 

1.3.2. Théorème de Guldin (Th n°1) 
 

Le théorème de Guldin (n°1) permet de déterminer le centre de masse (ou centre d’inertie)  

d’une ligne plane.   

Soit une courbe plane (C) de longueur L appartenant au plan (𝑂, 𝑥 , 𝑦 ) et ne coupant pas l’axe  

(𝑂, 𝑦 ). 

 

Soit G le centre de masse de la courbe C. 

Par définition : 𝑀(Σ)𝑂𝐺⃗⃗⃗⃗  ⃗ = ∫ 𝑂𝑃⃗⃗⃗⃗  ⃗𝑑𝑚
 

𝐶
  ou encore,  𝐿𝑂𝐺⃗⃗⃗⃗  ⃗ = ∫ 𝑂𝑃⃗⃗⃗⃗  ⃗𝑑𝑙

 

𝐶
 

On projette l’équation sur l’axe (𝑂, 𝑥 ) : 𝐿𝑥𝐺 = ∫ 𝑥𝑝𝑑𝑙
 

𝐶
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On fait tourner la ligne autour de l’axe (𝑂, 𝑦 ) et on regarde la surface engendrée :  

2𝜋. 𝐿. 𝑥𝐺 = ∫2𝜋. 𝑥𝑝. 𝑑𝑙
 

𝐶

 

Dans la rotation autour de cet axe, l’élément dl de (C) centré sur le point P engendre la surface  

𝑑𝑠 =  2𝜋. 𝑥𝑝 et si on intègre cet élément de surface sur toute la longueur de la courbe C,  

on obtient la surface engendrée par la ligne C : 𝑆 = ∫ 𝑑𝑠
 

𝐶
. 

On en déduit donc :  

𝟐𝝅. 𝑳. 𝒙𝑮 = ∫𝟐𝝅. 𝒙𝒑. 𝒅𝒍
 

𝑪

= 𝑺 

  

 

Exemple : Centre de masse d’une ligne matérielle homogène demi-circulaire (centre O, rayon R). 

  

Nous avons 𝑥𝐺 =
𝑆

2𝜋𝐿
=

4𝜋𝑅²

2𝜋.𝜋𝑅
   soit  𝑥𝐺 =

2𝑅

𝜋
. 

 

 

Exemple : Détermination de la surface totale d’un cône : 

Montrer que  𝑆𝑙𝑎𝑡 = 𝜋. 𝑅. √𝑅
2 +𝐻2 et donc que 𝑆𝑐ô𝑛𝑒 = 𝜋. 𝑅. (√𝑅

2 +𝐻2 + 𝑅) 

 

1.4. Etude d’une surface matérielle 

1.4.1. Centre de masse 

 

Nous définissons une masse surfacique 𝜎 = lim
Δ𝑆→0

∆𝑀

∆𝑆
 pour une plaque homogène  = cste. 

Pour une surface matérielle, nous considérons que l’épaisseur est négligeable par rapport  

aux autres dimensions. Nous obtenons la relation : 

𝑆. 𝑂𝐺⃗⃗ ⃗⃗  ⃗ = ∫ 𝑂𝑃⃗⃗⃗⃗  ⃗𝑑𝑠
 

𝑆
  ou encore ∫ 𝐺𝑃⃗⃗⃗⃗  ⃗𝑑𝑠 = 0⃗ 

 

𝑆
. 

 

  

Th de Guldin : L’aire de la surface engendrée par une ligne C, de longueur L, tournant autour 

d’un axe  situé dans son plan et qui ne le coupe pas, est égal au produit de la longueur L 

par la circonférence décrite par le centre de masse G de la courbe C. 
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1.4.2. Théorème de Guldin (Th n°2) 
 

Le théorème de Guldin (n°2) permet de déterminer le centre de masse (ou centre d’inertie)  

d’une surface plane.   

Soit une surface plane (S) de surface S appartenant au plan (𝑂, 𝑥 , 𝑦 ) et ne coupant pas l’axe  

(𝑂, 𝑦 ). 

 

Soit G le centre de masse de la surface S, par définition : 

𝑀(Σ)𝑂𝐺⃗⃗⃗⃗  ⃗ = ∫ 𝑂𝑃⃗⃗⃗⃗  ⃗𝑑𝑚
 

𝑆
   ou encore,  𝑆. 𝑂𝐺⃗⃗ ⃗⃗  ⃗ = ∫ 𝑂𝑃⃗⃗⃗⃗  ⃗𝑑𝑠

 

𝑆
 

On projette l’équation sur l’axe (𝑂, 𝑥 ) : 𝑆. 𝑥𝐺 = ∫ 𝑥𝑝𝑑𝑠
 

𝑆
 

En procédant de la même façon que précédemment pour le théorème n°1, 

on obtient : 

𝟐𝝅. 𝑺. 𝒙𝑮 = ∫ 𝟐𝝅. 𝒙𝒑. 𝒅𝒔
 

𝑺
= 𝑽  

 

Exemple : Détermination du volume d’un cône : 

Montrer que 𝑉𝑐ô𝑛𝑒 =
1

3
. 𝜋. 𝑅2. 𝐻 

 

On peut également le démontrer par intégration :  

𝑉𝑐ô𝑛𝑒 = ∫ 𝑟. 𝑑𝜃. 𝑑𝑟. 𝑑𝑧 = ∫ ∫ ∫ 𝑟. 𝑑𝜃. 𝑑𝑟. 𝑑𝑧
2.𝜋

0

𝑟𝑠𝑢𝑝
0

𝐻

0𝑉
 =

1

3
. 𝜋. 𝑅2. 𝐻  

 

avec 𝑟𝑠𝑢𝑝 =
𝑅

𝐻
. 𝑧 (car la borne d’intégration du rayon dépend de l’altitude du disque). 

 

 

Ou avec le théorème de Guldin n°2 : 

 

 

𝑉𝑐ô𝑛𝑒 = 2𝜋. 𝑆. 𝑥𝐺 = 2𝜋. (
𝑅.𝐻

2
) .
𝑅

3
=
1

3
. 𝜋. 𝑅2. 𝐻 

  

Th de Guldin : Le volume engendré par la surface S, de surface S, tournant autour d’un axe  

situé dans son plan et qui ne le coupe pas, est égal au produit de la surface S  

par la circonférence décrite par le centre de masse G de la surface S. 
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2. Moment d’inertie autour d’un axe 

2.1. Moment d’inertie d’un solide 

 

• Par rapport à un axe  : 

H = projection orthogonale de MS sur  = (O,𝑢⃗ ) 

𝑰(𝑺, 𝚫)  =  ∫𝑴𝑯⃗⃗⃗⃗ ⃗⃗  ⃗𝟐𝒅𝒎
 

𝑺

 = ∫𝒅𝟐𝒅𝒎
 

𝑺

  =  𝑰𝑶𝒖(𝑺) 

d = distance de M à l'axe   

 

• Par rapport à un point A : 

𝑰𝑨(𝑺)  =  ∫𝑨𝑴⃗⃗⃗⃗⃗⃗  ⃗
𝟐𝒅𝒎

 

𝑺

 

    

Soit M de coordonnées x, y, z dans le repère (𝑂, 𝑥 , 𝑦 , 𝑧 ). 

𝑰𝑶(𝑺)  =  ∫ (𝒙
𝟐 + 𝒚𝟐 + 𝒛𝟐)𝒅𝒎

 

𝑺
  𝑰𝑶𝒙(𝑺)  =  ∫ (𝒚

𝟐 + 𝒛𝟐)𝒅𝒎
 

𝑺
 

 

Remarque : Unité : kg.m²  

 

Si le moment d'inertie, proportionnel au carré de la distance à l'axe de rotation, est faible,  

le solide atteint rapidement sa vitesse de rotation nominale autour de cet axe  nécessité de diminuer 

l'inertie des solides en rotation (moteurs, ...cf patineurs). L'inertie peut être utile pour réguler  

des mouvements (volants d'inertie). 
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Exemple 1 : Déterminer Ioz pour le cylindre de révolution de rayon R, de hauteur h et de masse m. 

 

𝐼𝑂𝑧(𝑆)  =  ∫ (𝑥
2 + 𝑦2)𝑑𝑚

 

𝑆
   coordonnées polaires 

 = ∫ 𝑟²𝑑𝑚
 

𝑆
        avec   𝑑𝑚 =   𝑑𝑣 =   2 𝑟 ℎ 𝑑𝑟  

(en regroupant tous les points M à même distance r de Oz) 

     = ∫ 𝜌2𝜋𝑟3ℎ𝑑𝑟 = 2𝜋𝜌ℎ
𝑅4

4

 

𝑆
    𝑰𝑶𝒛 = 𝒎

𝑹𝟐

𝟐
 

 

Exemple 2 : Déterminer le moment d'inertie d'une sphère de rayon R, de masse m par rapport  

à son centre O puis par rapport à un diamètre  quelconque. 

𝐼𝑂 = ∫ 𝑟²𝑑𝑚
 

𝑆
        avec 𝑑𝑚 =   𝑑𝑣 =   𝑑 (

4

3
𝜋𝑟3) = 𝜌4𝜋𝑟²𝑑𝑟 

𝐼𝑂 = ∫ 𝜌4𝜋𝑟4𝑑𝑟 = 𝜌4𝜋
𝑅5

5
=
3

5
𝑚𝑅²

 

𝑆

 

Or   I = Iox = Ioy = Ioz  par symétrie et    Iox + Ioy  + Ioz  = 2 IO = 3 I    d'où      𝐼Δ =
2

5
𝑚𝑅² 

 

2.2. Théorème de Huygens 

 

Soit un axe 𝑢⃗  passant par le centre de gravité G d'un solide S et un axe parallèle à la distance d passant 

par le point A. On cherche la relation entre IGu(S) et IAu(S). 

 

 𝐼𝐴𝑢(𝑆) = ∫ 𝐻𝑀⃗⃗⃗⃗⃗⃗  ⃗2𝑑𝑚 =  ∫ (𝐻𝐾⃗⃗⃗⃗⃗⃗ + 𝐾𝑀⃗⃗⃗⃗⃗⃗  ⃗)2𝑑𝑚 
 

𝑆

 

𝑆
 (par définition) 

𝐼𝐴𝑢(𝑆) = ∫𝐻𝐾⃗⃗⃗⃗⃗⃗ 
2𝑑𝑚 + ∫𝐾𝑀⃗⃗⃗⃗⃗⃗  ⃗2𝑑𝑚 + 2.∫𝐻𝐾⃗⃗⃗⃗⃗⃗ . 𝐾𝑀⃗⃗⃗⃗⃗⃗  ⃗𝑑𝑚 

 

𝑆

 

𝑆

 

𝑆
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𝐼𝐴𝑢(𝑆) = 𝑚𝑑
2 + 𝐼𝐺𝑢(𝑆) + 2.∫𝐻𝐾⃗⃗⃗⃗⃗⃗ . 𝐾𝑀⃗⃗⃗⃗⃗⃗  ⃗𝑑𝑚 

 

𝑆

 

                                    (définitions précédentes + figure + 𝐾𝑀⃗⃗⃗⃗⃗⃗  ⃗ = 𝐾𝐺⃗⃗ ⃗⃗  ⃗ + 𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ) 

𝐼𝐴𝑢(𝑆) = 𝑚𝑑
2 + 𝐼𝐺𝑢(𝑆) + 2.∫𝐻𝐾⃗⃗⃗⃗⃗⃗ . 𝐾𝐺⃗⃗ ⃗⃗  ⃗𝑑𝑚 

 

𝑆

+ 2.∫𝐻𝐾⃗⃗⃗⃗⃗⃗ . 𝐺𝑀⃗⃗⃗⃗ ⃗⃗  𝑑𝑚 

 

𝑆

 

Or 𝐻𝐾⃗⃗⃗⃗⃗⃗ . 𝐾𝐺⃗⃗ ⃗⃗  ⃗ sont orthogonaux et 2. ∫ 𝐻𝐾⃗⃗⃗⃗⃗⃗ . 𝐺𝑀⃗⃗⃗⃗ ⃗⃗  𝑑𝑚 
 

𝑆
= 2. 𝑑. 𝑣 ∫ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗ 𝑑𝑚 = 0⃗ 

 

𝑆
  

(par définition du centre de gravité). 

D’où :     𝐼𝐴𝑢(𝑆) = 𝐼𝐺𝑢(𝑆) + 𝑚𝑑
2 

 

2.3. Matrice d’inertie (ou tenseur d’inertie) d’un solide en Q 
 

L’opérateur d’inertie et la matrice qui lui est associée permettent de caractériser la répartition  

de masse d’un solide. 

On se donne dans le repère R associé au solide les coordonnées des vecteurs considérés : 

𝑄𝑃⃗⃗⃗⃗  ⃗ = 𝑥. 𝑥 + 𝑦. 𝑦 + 𝑧. 𝑧    𝑢⃗ = 𝑝. 𝑥 + 𝑞. 𝑦 + 𝑟. 𝑧   

Cette matrice est ici définie dans un repère R associé au solide. 

[𝑰𝑸(𝑺)]𝑹 =

[
 
 
 
 
 
 
 
 ∫(𝒚𝟐 + 𝒛𝟐)𝒅𝒎

 

𝑺

−∫𝒙𝒚𝒅𝒎

 

𝑺

−∫𝒙𝒛𝒅𝒎

 

𝑺

−∫𝒙𝒚𝒅𝒎

 

𝑺

∫(𝒙𝟐 + 𝒛𝟐)𝒅𝒎

 

𝑺

−∫𝒚𝒛𝒅𝒎

 

𝑺

−∫𝒙𝒛𝒅𝒎

 

𝑺

−∫𝒚𝒛𝒅𝒎

 

𝑺

∫(𝒙𝟐 + 𝒚𝟐)𝒅𝒎

 

𝑺 ]
 
 
 
 
 
 
 
 

𝑸,𝑹

= [
𝑨
−𝑭
−𝑬

−𝑭
𝑩
−𝑫

−𝑬
−𝑫
𝑪
]

𝑸,𝑹

 

Notation :  

 

Dans la plupart des cas, on pourra omettre la notation avec le repère R pour alléger les notations. 

Remarque : Si on demande de calculer E, il n’y a pas de signe « moins ». 

On montre que le moment d'inertie du solide S par rapport à un axe 𝑢⃗  passant par Q s'écrit : 

𝐼𝑄𝑢(𝑆) =  𝑢⃗ . [𝐼𝑄(𝑆)]𝑢⃗   𝐼𝑄𝑢𝑣(𝑆) =  𝑢⃗ . [𝐼𝑄(𝑆)]𝑣  

Attention : La matrice d’inertie d’un solide est calculée en un point et dans un repère lié au solide.  



Cinétique du Solide  A_Roux 

10 
 

2.4. Particularités de l’opérateur 

2.4.1. Conventions 
 

Avec R =(𝑄, 𝑥 , 𝑦 , 𝑧 ) :  

• A, B et C sont les moments d'inertie par rapport aux axes (𝑄, 𝑥  ), (𝑄, 𝑦  ) et (𝑄, 𝑧  ).  

• D, E et F sont les produits d’inerties par rapport aux plans (𝑄, 𝑦 , 𝑧  ), (𝑄, 𝑥  , 𝑧 ), (𝑄, 𝑥  , 𝑦  ). 

2.4.2. Extensions 
 

On peut étendre la notion de moment d’inertie en le définissant par rapport à un élément géométrique 
quelconque. Ce qui permet d’écrire en considérant, par exemple, que 𝐼(𝑆/(𝑄, 𝑦 , 𝑧 )) = ∫ 𝑥²𝑑𝑚

 

𝑆
  

et 𝐼(𝑆/(𝑄, 𝑥 , 𝑧 )) = ∫ 𝑦²𝑑𝑚
 

𝑆
 

 
𝐼(𝑆/(𝑄, 𝑥 , 𝑧 )) + 𝐼(𝑆/(𝑄, 𝑦 , 𝑧 )) = 𝐼(𝑆/(𝑄, 𝑧 )) = 𝐶 

  
La somme des moments d’inertie par rapport à deux plans orthogonaux permet d’obtenir le moment 

d’inertie par rapport à la droite définie par l’intersection de ceux-ci. 

Ou encore :  

𝐼(𝑆/(𝑄, 𝑥 , 𝑧 )) + 𝐼(𝑆/(𝑄, 𝑦 , 𝑧 )) + 𝐼(𝑆/(𝑄, 𝑥 , 𝑦 )) = 𝐼(𝑆/𝑄)  =
1

2
 (𝐴 + 𝐵 + 𝐶) 

  
 

La somme des moments d’inertie par rapport à trois plans orthogonaux permet d’obtenir le moment 

d’inertie par rapport au point défini par l’intersection de ceux-ci. 

 

2.4.3. Repères particuliers 
 

Compte tenu de sa définition, la matrice d'inertie d'un solide est symétrique et ses vecteurs propres 

sont orthogonaux.  

Il existe donc une base orthonormée dans laquelle la matrice est diagonale. Associée au point Q,  

cette base est appelée Repère Principal d'Inertie.  

Si Q = G, on ira jusqu'à parler de Repère Central d'Inertie 

Lorsqu'un solide possède un élément de symétrie (plan, droite, point), cet élément fait partie  

du repère principal d'inertie. De plus, le CdG (G) appartient à cet élément de symétrie.  

La matrice d'inertie est bien sûr plus facile à calculer dans un repère qui fait apparaître les symétries. 
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2.5. Propriétés de la matrice d’inertie - Cas particuliers de solides 

 

Un Plan de symétrie (𝑄, 𝑥 , 𝑦 ) : 

    

L'axe perpendiculaire à ce plan (donc 𝑧 ) est principal d'inertie. 

D=0 et E=0  →[
𝐴
−𝐹
0

−𝐹
𝐵
0

0
0
𝐶
]

𝑄𝑥𝑦𝑧

 

 

Deux Plans de symétrie (𝑄, 𝑥 , 𝑦 ) et (𝑄, 𝑥 , 𝑧 ) :  

  

D=0 et E=0 et F=0 →[
𝐴
0
0

0
𝐵
0

0
0
𝐶
]

𝑄𝑥𝑦𝑧

 

 

Un axe de Révolution (𝑄, 𝑧 ) :  

 

A = B et D=0 et E=0 et F=0 → [
𝐴
0
0

0
𝐴
0

0
0
𝐶
]

𝑄𝑧

 

𝐴 + 𝐵 = 2𝐴 = 2𝐵 = 𝐶 + 2.∫𝑧²𝑑𝑚

 

𝑆

= ∫𝑟²𝑑𝑚

 

𝑆

+ 2.∫𝑧²𝑑𝑚

 

𝑆

 

Un centre de symétrie sphérique (G forcément) :  

 

A=B=C et D=0 et E=0 et F=0 →[
𝐴
0
0

0
𝐴
0

0
0
𝐴
]

𝑄

 

𝐴 + 𝐵 + 𝐶 = 3𝐴 = 3𝐵 = 3𝐶 =  2.∫ 𝑟²𝑑𝑚

 

𝑆

 

Remarques :  

• Le repère dans lequel est exprimé la matrice d’inertie est très important. 

• La matrice a la même forme (mais pas forcément les mêmes valeurs) quel que soit le point 

de l'axe où elle est calculée et le moment d'inertie autour de l'axe est constant  

quel que soit le point de calcul tant que l’on reste sur l’axe. 
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2.6. Les solides élémentaires 
 

Parallélépipède en G 

3 plans de symétrie (D = E = F = 0). 

[
𝑀 
𝐻2 + 𝐿²

12
0
0

0

𝑀 
𝐻2 + 𝑒²

12
0

0
0

𝑀 
𝐿2 + 𝑒²

12

]

𝐺,𝑅

 

 
Cylindre en G 

 
Axe de révolution Gz : A = B et D = E = F = 0.  

[
𝑀(
𝑅2

4
+
𝐻2

12
)

0
0

0

𝑀(
𝑅2

4
+
𝐻2

12
)

0

0
0

𝑀
𝑅2

2

]

𝐺,𝑧

 

 
Pour tous les solides de révolution : A = B et A + B = 2 A = 2 B = C + 2 ∫ 𝑧²𝑑𝑚

 

𝑆
 

On intègre en cylindrique avec x2 + y2 = r2 et dV = r dr d dz 

Cône en O (sommet) 

Hauteur H sur 𝑧  et base circulaire de rayon R.  

Utiliser des disques d’épaisseur dr dont le rayon varie 
avec z. 
 

[

3

20
𝑀(𝑅2 + 4𝐻2)

0
0

0
3

20
𝑀(𝑅2 + 4𝐻2)

0

0
0

3

10
𝑀𝑅²

]

𝐺,𝑧

 

Sphère en G 

Rayon R constant et épaisseur négligeable 

Calcul en G : A + B + C = 3A = 2. ∫ 𝑟²𝑑𝑚
 

𝑆
 = 2 M R2 

[

2

3
𝑀𝑅²

0
0

0
2

3
𝑀𝑅²

0

0
0

2

3
𝑀𝑅²

]

𝐺

 

Boule en G 

Rayon R (Idem Sphère et utiliser une sphère creuse d’épaisseur dr). 

[

2

5
𝑀𝑅²

0
0

0
2

5
𝑀𝑅²

0

0
0

2

5
𝑀𝑅²

]

𝐺
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2.7. Théorème de Huygens 
 

Ce théorème donne la relation existante entre [𝐼𝐺(𝑆)], matrice d'inertie du solide S au centre  

de gravité G, et [𝐼𝑄(𝑆)], matrice d'inertie en un point Q quelconque tel que 𝑄𝐺⃗⃗⃗⃗  ⃗ = 𝒂 𝑥 + 𝒃 𝑦  + 𝒄 𝑧  

[𝑰𝑸(𝑺)] = [𝑰𝑮(𝑺)] +𝒎[
𝒃𝟐 + 𝒄² −𝒂𝒃 −𝒂𝒄
−𝒂𝒃 𝒂𝟐 + 𝒄² −𝒃𝒄
−𝒂𝒄 −𝒃𝒄 𝒂𝟐 + 𝒃²

] 

Donc, la matrice d'inertie en un point quelconque Q est la somme de la matrice d'inertie exprimée  

en G et de la matrice d'inertie en G "du point Q affecté de la masse totale". 

Remarque : Pour mémoriser, on peut se rappeler de la formule suivante : 

[𝑰𝑸(𝑺)] = [𝑰𝑮(𝑺)] +𝒎 [𝑸𝑮⃗⃗⃗⃗⃗⃗ 
𝟐] 

ATTENTION : Cette relation n’est valable qu’entre G et un autre point !!! 

Remarque : Le déplacement de matrice ne s’utilise que pour pouvoir trouver la matrice d’un solide 

constitué de volumes élémentaires ET/OU dans le cas où l’on déplace en un point du solide qui reste 

fixe au cours du mouvement. 

Exemple : 

 

2.8. Cas d’un solide complexe composé de solides élémentaires 
 

Il peut être intéressant dans certains cas de faire une partition d’un solide en solides élémentaires 

dont les matrices d’inertie sont simples à calculer ou connues. 

 

 

Attention : Il est possible de sommer les matrices d’inertie au même point et dans le même repère. 
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3. Torseur cinétique (quantités de mouvements) 
 

{𝐶(𝑆/𝑅𝑔)} = {
𝑅𝑐(𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝜎(𝑄, 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
} =

{
 
 

 
 ∫𝑉(𝑃 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 

𝑆

𝑑𝑚(𝑃)

∫𝑄𝑃 ⃗⃗ ⃗⃗ ⃗⃗  ⋀ 𝑉(𝑃 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 

𝑆

𝑑𝑚(𝑃)
}
 
 

 
 

  
𝑅é𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑒 𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒

 
𝑀𝑜𝑚𝑒𝑛𝑡 𝑐𝑖𝑛é𝑡𝑖𝑞𝑢𝑒 𝑒𝑛 𝑄

 

 

3.1. Résultante cinétique (résultante du torseur) 
 

𝑅𝑐(𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑀𝑆 𝑉(𝐺 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑅𝑐(𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ne dépend que de G, c’est un invariant vectoriel, caractéristique d'une résultante de torseur. 

1.1. Moment cinétique (moment du torseur) 
 

𝜎(𝐴, 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝐴𝐵⃗⃗⃗⃗  ⃗ ∧ 𝑅𝑐(𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝜎(𝐵, 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

𝜎(𝑄, 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   est bien un champ de moment d'un torseur. 

Ou encore, avec une forme faisant intervenir la matrice d’inertie : 

𝜎(𝑄, 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑀𝑆𝑄𝐺⃗⃗⃗⃗  ⃗ ∧ 𝑉(𝑄 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + [𝐼𝑄(𝑆)](Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

 

Cas particuliers : 

𝑸 𝒇𝒊𝒙𝒆 𝒅𝒂𝒏𝒔 𝑹𝒈 → 𝝈(𝑸, 𝑺/𝑹𝒈)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝑰𝑸(𝑺)](𝜴𝑺/𝑹𝒈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

𝑮 =  𝑸 →  𝝈(𝑮, 𝑺/𝑹𝒈)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝑰𝑮(𝑺)](𝛀𝑺/𝑹𝒈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  

  

Remarques :  

• Dans la plupart des calculs, nous essaierons de nous placer au point G pour des soucis  

de simplification de l’expression du moment cinétique 

• Dans le cas ou Q appartient au solide et est fixe, il faudra utiliser les méthodes 

précédentes pour les changements de point (Théorème de Huygens, …) 

• Si le moment cinétique doit être déterminé en A alors que l’opérateur d’inertie est donné 

en Q : on calcule le moment cinétique là où on connaît l’opérateur d’inertie, ici en Q  

puis on réduit le moment cinétique en A par la relation de moment.  

On obtient alors la relation générale suivante :  

𝝈(𝑨, 𝑺/𝑹𝒈)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑴𝑺𝑸𝑮⃗⃗⃗⃗⃗⃗ ∧ 𝑽(𝑸 ∈ 𝑺/𝑹𝒈)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + [𝑰𝑸(𝑺)](𝛀𝑺/𝑹𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) + 𝑨𝑸⃗⃗⃗⃗⃗⃗ ∧ 𝑴𝑺𝑽(𝑮 ∈ 𝑺/𝑹𝒈)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   


