Dynamique du Solide A_Roux

Dynamique du Solide

Compétences attendues :

v' Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables.

v' Proposer une démarche permettant la détermination d’une action mécanique inconnue
ou d'une loi de mouvement.

v' Déterminer les actions mécaniques en dynamique dans le cas ou le mouvement est imposé.

v/ Déterminer la loi de mouvement dans le cas ol les efforts extérieurs sont connus.

1. Torseur dynamique (quantités d’accélération)

On définit le torseur dynamique du solide S par rapport a Rg au point Q :

(e eS/R,) dm(P
[ J ( /Rg) dm(P) ] Résultante dynamique

R4(S/Ry) }

{T4(S/RY} = { SOSTR)

1 f P'AT(P € S/R,) dm(P)J Moment dynamique en Q
s

1.1. Résultante dynamique

R4(S/R,) = MsT(G € S/R,)

R;(S/Rg) est un invariant vectoriel, caractéristique de la résultante d'un torseur.

1.2. Moment dynamique

5(Q,S/R,) = 5(B,S/R,) + QB AR4(S/R,)

6(Q,S/Rg) est le champ de moment d'un torseur.

1.3. Calcul des quantités d’accélération

. dR.S/R)
Rq(S/Ry) = Tg
N | ,S/R
5(Q,S/Ry) = U(th/ o) + MsV(Q/R,) AV(G € S/R,)
Remarque :

e Lavitesse au point Q est calculée comme s’il n"appartenait pas a S.
e Comme il n'existe pas de formule simple pour le calcul du moment dynamique d'un solide,
on calcule en général le moment cinétique puis on dérive.
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1.4. Cas particulier

Q fixedans R, 2 6(Q,S/R,) = d [O'(Q S/Rg)]

= Q 2 6(G,S/Ry) = [O'(G S/Ry)]
Remarque : On retrouve ici I'intérét de se placer en G ou en un point Q fixe dans R,.

1.5. Remarque : calcul d’'une projection sur un axe

5(Q,5/Rg).ii = "2 71 + Mg (V(Q/R,) AV(G € S/R,)).ii
5(Q,S/Ry). T = TN _ 50, 5/R,). 22 + M (V(Q/R,) AV (G € S/R,). T

Lorsque le vecteur U est constant, cela peut simplifier considérablement les calculs en évitant d’avoir
a dériver l'intégralité du moment cinétique souvent exprimé dans une autre base.

d(a(Q,S/R,). 1)
dt

5(Q,S/Ry).u = +Ms ((V(Q/Ry) AV(G € S/Ry)). U
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2. Principe Fondamental de la Dynamique

2.1. Principe fondamental de la dynamique appliqué a 1 solide.

R(S-S)

e Soit S un solide en mouvement par rapport a un repére (0, %, y, Z).
e S est soumis a des actions mécaniques extérieures (ces actions mécaniques peuvent étre
de contact ou a distance) modélisées par le torseur :

R(S-YS)
My(S > S)

{rt(§- = {

} dont les éléments de réduction sont déterminés au point A.
A

Il existe au moins un repére R;, appelé repére galiléen tel que le torseur des actions mécaniques
extérieures appliquées a S (défini en un point A) soit égal au torseur dynamique du mouvement
de S par rapport a R, (défini lui aussi au point A).

(S > $)} ={D(S/Ry)}

R(S—Y5) ml; (S/Ry)
UACER)) p 84(S/Ry) A
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2.2. Principe fondamental de la dynamique appliqué a plusieurs solides :
(Théoreme des actions réciproques)

Z

Ma(S; = 51) R(S, > S,)

e Soit S; et S; deux solides appartenant a un ensemble Z.
e SoitA € (S1), C € (S;) et B € (S1)N\(S2).

On isole S;. Bilan des actions mécaniques extérieures s’exercant sur S; :

RE - Sy)
MuE - Sy)

tE- S)}= { } : le torseur résultant des actions mécaniques extérieures a (%)
A
appliquées sur (S;).

R(S; — S§1)
Mg(S; = S1)

{r(5; > S} = {

} : le torseur des actions mécaniques intérieures a (X) appliquées

B
par (Sz) sur (Sy1).

On isole S,. Bilan des actions mécaniques extérieures s’exercant sur S, :

RE - S,)
MC(z - 5)

t1E - Sy} = { } :  le torseur résultant des actions mécaniques extérieures a (%)
c
appliquées sur (S,).

R(S1 - S3)
Mg(S; = S3)

{(S1 - Sy} = { } : le torseur des actions mécaniques intérieures a (X) appliquées
B

par (S1) sur (S,).
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On isole ¥ = S;US,. Bilan des actions mécaniques extérieures s’exercant sur > :

TE->D}=CE - SHI+{E - S)} le torseur résultant des actions mécaniques
extérieures a (X) appliquées sur (S1et Sy).

e On applique le PFD 3 S; : {D(S1/R)} ={rE - S} +{t(S, ~ S1)}

e On applique le PFD 35, : {D(S2/R)} ={x(E » S} +{(S1 ~ S}

e On applique le PFD 3 3 = S;US;: {DE/Ry} = {r(E - %)} donc

{D(Z/Rg)} ={tE - S} +{tE - S}

En utilisant les propriétés du torseur dynamique, {D(Z = S; + S,/R,)} = {D(S1/R,)} + {D(S2/R,)}

pou  {T(S; = S} +{1(51 = S3)} = {0}

(Nous retrouvons ici le principe des actions mutuelles vu avec le PFS en 1% année).

Conclusion : Quand on isole un ensemble de solides X, et que I'on applique le PFD,
on s’intéresse uniquement au bilan des actions mécaniques extérieures a X.
(On ne tient pas compte des interactions intérieures a X).

2.3. Théoreémes généraux de la dynamique

Ces expressions proviennent de la séparation de la résultante et du moment du torseur dynamique.

2.3.1. Lethéoreme de la résultante dynamique

R(E - X) = My T(G € 2/R,)

2.3.2. Le théoreme du moment dynamique

M,(E - %) = 5(A,2/R,)
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2.3.3. Cas particuliers

Systeme au repos :

On retrouve le principe du PFS avec {T(i - Z)} = {0}

Systeme en mouvement de translation rectiligne :

R(E - %)= MsT(GCEZ/R,) et My(Z>2)=0

Systeme en mouvement de rotation autour d’un axe fixe, soit A un point de cet axe :

RE->Z) = 0etMy(E - %) =85(4,2/Ry)

3. PFD dans un repéere non-galiléen (pour info)

Soit Rg (Oy, Xg, Vg, Z4) un repére galiléen et R (0, %, ¥, Z) un repére non galiléen.

MS = S)

RS —=S)

Le PFD s’applique a un repére quelconque a condition d’ajouter au torseur des efforts extérieurs,
les torseurs des forces d’inertie d’entrainement et de Coriolis définit par les éléments
de réduction ci-dessous :
Qe (S,R/Ry)
{Die(S,R/Ry)} = [ — .
8i.(A,R/Ry)
Qlc(S,R/Rg)}

et {Dic(S,R/Ry)} ={ 5.c(A,S/R)
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4. Méthodologie

4.1. Détermination d’efforts de liaisons

Quelles sont les composantes des torseurs d’inter-efforts ?

Probléme : Dimensionnement d’une liaison ou d’une structure : choix ou validation des implantations
de liaisons, des dimensions des pieces, des composants normalisés, des matériaux ...

Modele adopté : Schéma mécanique de structure : il est nécessaire de paramétrer I'implantation
des composants donc des liaisons « réelles » et non des liaisons réduites.

Ecrire toutes les équations correspondant aux liaisons a déterminer. Il n’est pas toujours nécessaire
de développer tous les isolements intermédiaires.

4.2. Détermination d’une équation de mouvement

Probléme direct : Vompte tenu des « efforts » appliqués par les actionneurs et des charges extérieures
appliquées au systéme, quelles sont les « accélérations » des solides ?

Probléme inverse : Compte tenu d’une loi de mouvement souhaitée (trapéze, etc...) et des charges
extérieures sur le systeme (récepteurs) quels devront étre les efforts appliqués par les actionneurs ?

Probléme : Choix d’un actionneur ou validation d’un choix :

e Isolement et choix judicieux des équations a utiliser (trés souvent une seule équation scalaire
a développer par isolement).

e Schéma mécanique (cinématique) avec un graphe des liaisons, en indiquant les axes
de transmission des puissances.

e Ecrire (uniquement) les équations correspondant aux mouvements (somme des résultantes
projetée sur I'axe d’une translation, somme des moments en un point de I'axe d’une rotation
et projetée sur cet axe).

e Dans la plupart des cas faire autant d’isolement que de solides (penser aussi a faire
des sous-ensembles de solides, notamment soumis a 2 forces et dont la masse
est négligeable).

e Commencer par les 2 extrémités (entrées et sorties) est souvent une bonne solution
quand on ne sait pas par ol commencer.
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5. Stratégie globale

Graphe des liaisons avec les actions
mécaniques

\4

(Idemiﬁer les parametres d'entrée/sortie)

\ 4
(" Isoler un sous-ensemble du systéme )
(sans le bati1) dont les frontiéres coupent
les liaisons comprenant les inconnues
recherchées et qui inclue les solide

\__ Ssoumus aux actions de commande )
>
\ 4
("Ecrire les torseurs statiques relatifs aux )
actions mécaniques extérieures et aux
\___liaisons qui coupent la frontiere )

\ 4

( Appliquer le PFD ) ( Isoler un autre sous-ensemble )
A

C Déterminer les équations utiles )

non

On peut résoudre

( Résoudre le probleme )

e Appliquer le PFD en précisant quelle équation vectorielle vous utilisez et en quel point
si c'est lI'équation de moment (penser a réduire les torseurs au bon point).

e Choisir judicieusement le(s) vecteur(s) de projection que vous utiliserez.

e Ecriture du PFD sous forme vectorielle (on cherchera dans un premier temps a conserver
les équations vectorielles telles qu’elles et si besoin est, ces dernieres seront exprimées
dans la méme base).

o Développer I'équation scalaire en commencant par les efforts, pour vérifier que vous faites
bien apparaitre ce qui était prévu (il n’est pas toujours nécessaire d'effectuer
tous les développements, en particulier pour les composantes du torseur dynamique ;
le simple choix du vecteur de projection peut faire disparaitre certains développements).

e Veérifier a chaque lighe I'homogénéité de vos résultats !!!
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6. Astuces de calculs

Considérons un ensemble de solides £ composé de plusieurs solides élémentaires.

S3

Ny
w
[y

Z=Sl+52+33

6.1. Matrices d’inertie

Pour calculer la matrice d’inertie de cet ensemble de solides, nous pouvons calculer les matrices
d’inertie de chaque solide et es ajouter en un méme point. Pour chaque matrice, nous utilisons
le théoreme de Huygens (entre son centre de gravité et le point C dans I'exemple ici).

UcE)]r=[Ic(SD]Ir+c(S2)|r+[1c(S3)]r

6.2. Moments cinétiques

Pour le calcul du moment cinétiques en un point C (par exemple). On peut calculer le moment cinétique
global a(C,Z/R,), ce qui est trés long et qui s’avere assez compliqué (détermination du centre
de gravité global Giz3, ...).

Le plus simple est de décomposer le moment cinétique global en passant par les moments cinétiques
de chaque solide :

a(C,Z/R,) = 6(C,S1/R,) + a(C,S;/R,) + a(C,S3/R,)

Et chague moment cinétique se calcule avec la formule suivante :

o(C,Sk/R,) = M5, CG, AV(C € Si/R,) + [1c(S1)1(Qs,/r,) pourk = 1,2 0u3
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6.3. Résultantes dynamiques - Accélérations

Pour le calcul des résultantes dynamiques ou des accélérations au centre de gravité. On peut calculer

la résultante dynamique globale My I'(G1,3 € Z/Ry), ce qui est trés long et compliqué (détermination
du centre de gravité global Giz3, ...).

Le plus simple est de décomposer la résultante dynamique globale en passant par les résultantes
dynamiques de chaque solide :

M5 T(Gyy3 € 2/R,) = M, T(G; € 1/R,) + M, T(G, € 2/R,) + M3 T(G3 € 3/R,)

6.4. Moments dynamiques

Pour le calcul du moment dynamique en un point C (par exemple). On peut calculer le moment
dynamique global §(C,Z/Ry), ce qui est trés long et qui s’avére assez compliqué (détermination
du centre de gravité global G123, ...).

Le plus simple est de décomposer le moment dynamique global en passant par les moments
dynamiques de chaque solide :

5(C,.Z/R,) = 8(C,S1/R,) + 8(C,S,/R,) + &(C,S3/R,)

Et chague moment dynamique se calcule avec la formule suivante :

do(CSk/Ry)

8(C,Si/Rg) = ==

+ M.S‘k V(C/Rg) ANV (G € Sk/Rg) pourk = 1,2 ou3

10



