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Energétique 
 

Compétences attendues : 

✓ Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables. 

✓ Proposer une démarche permettant la détermination d’une action mécanique inconnue  

ou d'une loi de mouvement.  

✓ Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.  

✓ Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus. 

 

1. Energie cinétique 

1.1. Définition 
 

   𝐸𝑐(𝑆/𝑅𝑔) =  
1

2
∫ [𝑉(𝑀 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]

2

𝑑𝑚
 

𝑆
(𝑀) Unité : le Joule (J) 

 

    

1.2. Cas du solide indéformable : 
 

2𝐸𝐶(𝑆/𝑅𝑔) = ∫[𝑉(𝐺 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝐺𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗]² 𝑑𝑚

 

𝑆

 

= ∫[𝑉(𝐺 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]² 𝑑𝑚

 

𝑆

+∫[Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝐺𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗]² 𝑑𝑚+

 

𝑆

2∫𝑉(𝐺 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. [Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝐺𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗] 𝑑𝑚  ∗
 

𝑆

 

 

* produit mixte: (𝑎 , 𝑏⃗ , 𝑐  ) = 𝑎 . (𝑏⃗ ∧ 𝑐 )= déterminant des 3 vecteurs donc invariant par permutation 
circulaire. 

 

 Donc [Ω⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ]
2
= [Ω⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ]. [Ω⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ] = Ω⃗⃗ . 𝐺𝑀⃗⃗⃗⃗ ⃗⃗  ∧ [Ω⃗⃗ ∧ 𝐺𝑀⃗⃗⃗⃗ ⃗⃗ ] 

 
 

= 𝑚[𝑉(𝐺 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]² + Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∫[𝐺𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝐺𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗] 𝑑𝑚 +

 

𝑆

2𝑉(𝐺 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. [Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧∫𝐺𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗] 𝑑𝑚 

 

𝑆

 

 
         

D'où    𝑬𝒄(𝑺/𝑹𝒈) =  
𝟏

𝟐
 𝒎 [𝑽(𝑮 ∈ 𝑺/𝑹𝒈)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]

𝟐
+
𝟏

𝟐
 𝛀𝑺/𝑹𝒈
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. [𝑰𝑮(𝑺)]𝛀𝑺/𝑹𝒈

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  
                  
 
Attention : Cette formule n’est vrai qu’en G !! 
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Cas particuliers:  
 

• Mouvement d'un solide S autour d'un point fixe A de Rg :  
 

𝐸𝑐(𝑆/𝑅𝑔) =  
1

2
 Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. [𝐼𝐴(𝑆)]Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

 
à partir des équations précédentes, en passant par A au lieu de G 

 

• Mouvement d'un solide S autour d'un axe fixe (A,𝑥 ) de Rg : 
 

on peut poser Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜔𝑥   d'où 

 

𝐸𝑐(𝑆/𝑅𝑔) =  
1

2
 [𝐼𝐴𝑥(𝑆)]𝜔² 

 
Remarque : Energie cinétique d’un ensemble ∑ de n solides Si : 

𝐸𝑐(Σ/𝑅𝑔) =∑𝐸𝑐𝑖

𝑛

𝑖=1

(𝑆𝑖/𝑅𝑔) 

Expression générale : 

𝑬𝒄(𝑺/𝑹𝒈) =
𝟏

𝟐
{𝑪(𝑺/𝑹𝒈)}𝑸 ⨂ {𝑽(𝑺/𝑹𝒈)}𝑸 

Remarques :  

• L’énergie cinétique est toujours une grandeur positive. 

 

• L’énergie cinétique est indépendante du point où on la calcule. 

 

• Les torseurs doivent être écrits au même point avant multiplication. On cherchera toujours  

à effectuer les calculs là où ils sont les plus simples. 

 

• Lors du calcul, le moment cinétique est multiplié par la vecteur rotation :  

Il faut alors calculer uniquement les composantes utiles du moment cinétique et de la matrice 

d’inertie. Dans la plupart des cas, il n’est nécessaire de calculer uniquement le moment d’inertie 

autour de l’axe de rotation (cela ne signifie pas que les autres composantes de la matrice d’inertie 

sont nulles, mais simplement qu’elles n’apparaissent pas dans l’expression finale). 
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1.3. Inertie équivalente : 
 

Application : Calcul de l’inertie équivalente d’une chaîne de transmission du véhicule RobuCar. 

 

 

On ne s’intéressera ici qu’au système {moteur + réducteur +roue}. 

On donne les caractéristiques suivantes : 

Moteur :  

Moment d’inertie de l’arbre moteur : Jmot = 0,0095 kg.m². Masse du moteur : MMot = 0,350 kg.   

Réducteur :  

Moment d’inertie de l’arbre du réducteur : JRed = 3,2 kg.m². Masse du réducteur : MRed = 0,125 kg. 

Rapport de réduction : N = 13.  

Roue :  

Moment d’inertie de l’arbre du réducteur : JRoue = 0,004 kg.m².  Masse de la roue : Mroue = 0,2 kg. 

Rayon : R = 0,20 m.  

Véhicule : Vitesse de translation :  V 

Déterminer l’inertie équivalente du système de transmission ramené au moteur. 

𝐸𝑐(𝑀𝑜𝑡) =  
1

2
 𝐽𝑚𝑜𝑡𝜔𝑚𝑜𝑡

2 +
1

2
𝑀𝑚𝑜𝑡𝑉²  𝐸𝑐(𝑅𝑒𝑑) =  

1

2
 𝐽𝑅𝑒𝑑𝜔𝑅𝑒𝑑

2 +
1

2
𝑀𝑅𝑒𝑑𝑉² 

𝐸𝑐(𝑅𝑜𝑢𝑒) =
1

2
𝐽𝑅𝑜𝑢𝑒𝜔𝑅𝑜𝑢𝑒

2 +
1

2
 𝑀𝑟𝑜𝑢𝑒𝑉² 𝐸𝑐(𝑇𝑜𝑡) =  𝐸𝑐(𝑀𝑜𝑡) + 𝐸𝑐(𝑅𝑒𝑑) + 𝐸𝑐(𝑅𝑜𝑢𝑒) 

Réducteur

Partie 
électrique

m

mc



Vitesse de la rouer

rc



Force de contact 
pneu-chaussée

r

Route

Wave Front

Gum

Wheel

xF
Elasticité

Partie 
mécanique

ua

pF

Pneu

K

RoueArbre de la roue

Moteur 
électrique

re

rec



re

rec



r

rc



(-)

+

r

Capteur de 
vitesse

Correcteur

Consigne de 
vitesse

( )i t

r

( )mc t

-
+ Correcteur

Partie
électrique

Partie mécanique 
du moteur (arbre)

Réducteur
Partie mécanique de 
la roue  (arbre+roue)

Capteur de vitesse
(codeur optique)

( )rec t ( )r t

Consigne de 
vitesse

Vitesse 
réelle

c

( )c t

(a)

(b)

( )eu t ( )m t ( )re t

( )r t

Partie de puissance (opérative)Partie de commande

( )r t
( )au t
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𝐸𝑐(𝑇𝑜𝑡) =
1

2
 𝐽𝑚𝑜𝑡𝜔𝑚𝑜𝑡

 2 +
1

2
 𝐽𝑅𝑒𝑑𝜔𝑅𝑒𝑑

 2 +
1

2
 𝐽𝑅𝑜𝑢𝑒𝜔𝑅𝑜𝑢𝑒

2 +
1

2
(𝑀𝑚𝑜𝑡 +𝑀𝑅𝑒𝑑 +𝑀𝑟𝑜𝑢𝑒). 𝑉² 

Or 𝑁 =
 𝜔𝑚𝑜𝑡
 

𝜔𝑅𝑒𝑑
  et 𝑉 = 𝜔𝑅𝑜𝑢𝑒. 𝑅 = 𝜔𝑅𝑒𝑑

 . 𝑅 

D’où  

𝐸𝑐(𝑇𝑜𝑡) =
1

2
 𝐽𝑚𝑜𝑡𝜔𝑚𝑜𝑡

 2 +
1

2
𝐽𝑅𝑒𝑑

𝜔𝑚𝑜𝑡
 2

𝑁²
+
1

2
 𝐽𝑟𝑜𝑢𝑒 . 𝜔𝑚𝑜𝑡

 2.
1

𝑁2
+
1

2
(𝑀𝑚𝑜𝑡 +𝑀𝑅𝑒𝑑 +𝑀𝑟𝑜𝑢𝑒). 𝜔𝑚𝑜𝑡

 2.
𝑅2

𝑁2
 

Donc  

𝐸𝑐(𝑇𝑜𝑡) =
1

2
 𝜔𝑚𝑜𝑡

 2 [𝐽𝑚𝑜𝑡 +
𝐽𝑅𝑒𝑑
𝑁2

+ 
𝐽𝑟𝑜𝑢𝑒
𝑁2

+ (𝑀𝑚𝑜𝑡 +𝑀𝑅𝑒𝑑 +𝑀𝑟𝑜𝑢𝑒)
𝑅2

𝑁2
] =

1

2
 𝜔𝑚𝑜𝑡

 2𝐽𝑒𝑞 

Et finalement 𝑱𝒆𝒒 = 𝑱𝒎𝒐𝒕 +
𝑱𝑹𝒆𝒅

𝑵𝟐
+ 

𝑱𝒓𝒐𝒖𝒆

𝑵𝟐
+ (𝑴𝒎𝒐𝒕 +𝑴𝑹𝒆𝒅 +𝑴𝒓𝒐𝒖𝒆)

𝑹𝟐

𝑵𝟐
     A.N. : Jeq = 0,0286 kg.m² 

Déterminer par un raisonnement similaire, la masse équivalente ramenée au mouvement global  

du véhicule. 

Par un raisonnement similaire, il faut tout exprimer en fonction de 𝑉, ce qui donne : 

𝐸𝑐(𝑇𝑜𝑡) =
1

2
 𝑉2 [(𝑀𝑚𝑜𝑡 +𝑀𝑅𝑒𝑑 +𝑀𝑟𝑜𝑢𝑒) +  𝐽𝑚𝑜𝑡 .

𝑁2

𝑅2
+ 𝐽𝑅𝑒𝑑.

1

𝑅²
+ 𝐽𝑟𝑜𝑢𝑒 .

1

𝑅²
] =

1

2
 𝑉2𝑀𝑒𝑞 

 𝑴𝒆𝒒 = (𝑴𝒎𝒐𝒕 +𝑴𝑹𝒆𝒅 +𝑴𝒓𝒐𝒖𝒆)+  𝑱𝒎𝒐𝒕.
𝑵𝟐

𝑹𝟐
+ 𝑱𝑹𝒆𝒅.

𝟏

𝑹²
+ 𝑱𝒓𝒐𝒖𝒆.

𝟏

𝑹𝟐
   A.N. : Meq = 120,9 kg 

2. Puissance 

2.1. Puissance des efforts extérieurs à un système matériel Σ en mouvement  

par rapport à un repère Rg 
 

Soit un champ de forces  𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  agissant en chaque point M d'un système Σ. 

 

Exemples :  

• Pesanteur : 𝑑𝐹⃗⃗⃗⃗  ⃗(𝑀)=  𝑔(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑑𝑣 

• Champ des forces de contact entre 2 solides : 𝑑𝐹(𝑀) ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗= - p(M) 𝑛(𝑀)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ds + f p(M) 𝑡(𝑀)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ds 

La puissance développée, à l'instant t, par l'action des efforts extérieurs sur Σ, dans le mouvement  

de Σ/Rg est : 

𝑷(𝑬𝒙𝒕 → 𝚺/𝑹𝒈) = ∫ 𝑽(𝑴 ∈ 𝚺/𝑹𝒈)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝒅𝑭(𝑴)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 

𝑴∈𝚺

 

Unité : Le Watt et on a : 1 kW = 1,36 ch 

Remarque : On définit le travail fournit par [Ext→ Σ] entre les instants t0 et t1 par : 

𝑊𝑡0
𝑡1 = ∫ 𝑃(𝑡)𝑑𝑡

𝑡1
𝑡0

  Unité : Le Joule et on a : 1 kW.h = 3600.10 3 J 
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2.2. Cas particulier du solide indéformable : 
 

On a  𝑉(𝑀 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑉(𝐴 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗  

d'où   

𝑃(𝐸𝑥𝑡 → S/𝑅𝑔) = ∫ 𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .𝑉(𝐴 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 

𝑀∈S

+ ∫ 𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . [Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝐴𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗]

 

𝑀∈S

 

           = 𝑉(𝐴 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ .∫ 𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑀∈S
+Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.∫ 𝐴𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑀∈S
  

or le torseur associé aux efforts extérieurs à S en A s’écrit : 

{
 
 

 
 ∫ 𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

 

𝑀∈S

= 𝑅(𝐸𝑥𝑡 → 𝑆)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

∫ 𝐴𝑀⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝑑𝐹(𝑀)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

 

𝑀∈S

= 𝑀𝐴(𝐸𝑥𝑡 → 𝑆)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

}
 
 

 
 

 

   

donc 𝑃(𝐸𝑥𝑡 → S/𝑅𝑔) = 𝑉(𝐴 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.𝑅(𝐸𝑥𝑡 → 𝑆)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   +Ω𝑆/𝑅𝑔
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.𝑀𝐴(𝐸𝑥𝑡 → 𝑆)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

La puissance développée par les actions mécaniques extérieures à un solide S  
en mouvement par rapport à R est égale au produit (comoment) du torseur cinématique  
de S/Rg par le torseur des actions mécaniques extérieures. 
 

𝑷(𝑬𝒙𝒕 → 𝐒/𝑹𝒈) = {𝝉(𝑬𝒙𝒕 → 𝑺)}𝑨 ⨂ {𝑽(𝑺/𝑹𝒈)}𝑨 
 

Le comoment ne dépend pas du point choisi pour le calcul des deux torseurs  

(même point pour les deux !) mais du repère R. 

Rappel : Le comoment de deux torseurs s’écrit : 

{
𝑋 𝐿
𝑌 𝑀
𝑍 𝑁

}

𝐴

 ⨂{

𝜔𝑥 𝑉𝑥
𝜔𝑦 𝑉𝑦
𝜔𝑧 𝑉𝑧

}

𝐴

= 𝑋. 𝑉𝑥 + 𝑌. 𝑉𝑦 + 𝑍. 𝑉𝑧 + 𝐿.𝜔𝑥 +𝑀.𝜔𝑦 + 𝑁.𝜔𝑧 

 

2.3. Puissance des efforts intérieurs à un système de solides indéformables : 
 

On parle aussi de la puissance des inter-efforts de liaison. 

Soient 2 solides S1 et S2 en liaison à l'intérieur d'un système. La puissance développée par les efforts 

de liaison entre les 2 solides est de la forme : 

 𝑃(𝑆2 ∪ 𝑆1 /𝑅𝑔)  =  𝑃(𝑆2  →  𝑆1 /𝑅𝑔)  +  𝑃(𝑆1 →  𝑆2 /𝑅𝑔) 

= {𝜏(𝑆2 → 𝑆1)}  ⨂ {𝑉(𝑆1/𝑅𝑔)} +{𝜏(𝑆1 → 𝑆2)}  ⨂ {𝑉(𝑆2/𝑅𝑔)}  
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= {𝜏(𝑆2 → 𝑆1)}  ⨂ [{𝑉(𝑆1/𝑅𝑔)} − {𝑉(𝑆2/𝑅𝑔)} ] 

D’où    𝑷𝒊(𝑺𝟏, 𝑺𝟐) = {𝝉(𝑺𝟐 → 𝑺𝟏)}  ⨂ {𝑽(𝑺𝟏/𝑺𝟐)}  
 

Cette puissance est indépendante du repère Rg par rapport auquel elle est calculée. 

   

2.4. Liaison parfaite entre deux solides 
 

Deux solides S1 et S2 ont une liaison parfaite si, quel que soit le mouvement autorisé par la liaison,  

la puissance développée par les actions mutuelles entre S1 et S2 est nulle (pas de frottement) : 

𝑷𝒊(𝑺𝟏, 𝑺𝟐) = 𝟎 

Remarque générale : La puissance est une grandeur scalaire, donc signée. 

Exemples :  

• Puissance « motrice » : un moteur entraîne un arbre : 𝑃𝑚𝑜𝑡 = 𝐶𝑚𝑜𝑡→𝑎𝑟𝑏𝑟𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Ω𝑎𝑟𝑏𝑟𝑒/0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ > 0.  

La vitesse de rotation et le couple sont de même sens.  

 

• Puissance dans une liaison glissière 1/0 avec frottement : 𝑃0→1 = 𝑇0/1⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑉𝑀(1/0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ < 0.  

L’effort tangentiel étant opposé à la vitesse de glissement (Coulomb).  

 

• Puissance dissipée dans un embrayage ou un frein : 𝑃0→1 = 𝐶𝑓0/1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Ω1/0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  < 0.  

 

3. Théorème de l’énergie cinétique 

3.1. Solide unique S en mouvement / Rg : 
 

PFD :  {𝐷(𝑆/𝑅𝑔)} = {𝜏(𝑆̅ →  𝑆)} 

en multipliant cette expression par le torseur cinématique, on obtient : 

{𝐷(𝑆/𝑅𝑔)}⨂{𝑉(𝑆/𝑅𝑔)} =
{𝜏(𝑆̅ →  𝑆)}⨂{𝑉(𝑆/𝑅𝑔)} = 𝑃(𝑆̅ → 𝑆/𝑅𝑔)  

    = Puissance galiléenne des efforts extérieurs à S. 

Or {𝐷(𝑆/𝑅𝑔)}⨂{𝑉(𝑆/𝑅𝑔)} = [∫ Γ(𝑀 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑆
 𝑑𝑚]. 𝑉(𝐴 ∈ 𝑆/𝑅𝑔)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗+ [∫ 𝐴𝑀⃗⃗⃗⃗ ⃗⃗  ∧ Γ(𝑀 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑆
 𝑑𝑚]. Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

     = ∫ Γ(𝑀 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑆
. [𝑉(𝐴 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + Ω𝑆/𝑅𝑔

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝐴𝑀⃗⃗⃗⃗⃗⃗ ]𝑑𝑚  

  = ∫ Γ(𝑀 ∈ 𝑆/𝑅𝑔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

𝑆
. [𝑉(𝑀 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ]𝑑𝑚 = ∫

1

2

 

𝑆

𝑑

𝑑𝑡
𝑉(𝑀 ∈ 𝑆/𝑅𝑔)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ²𝑑𝑚

    =
𝑑

𝑑𝑡
𝐸𝑐(𝑆/𝑅𝑔) 
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d’où le théorème de l’énergie cinétique : 

La dérivée, par rapport au temps, de l’énergie cinétique galiléenne d’un solide S est égale  

à la puissance galiléenne des actions mécaniques extérieures à S. 

𝑷(𝑬𝒙𝒕 → 𝑺/𝑹𝒈) =
𝒅

𝒅𝒕
𝑬𝒄(𝑺/𝑹𝒈) 

3.2. Système Σ de n solides Sj : 
 

Pour un solide, on a :   

𝑃(𝐸𝑥𝑡 → 𝑆𝑗/𝑅𝑔) =
𝑑

𝑑𝑡
𝐸𝑐(𝑆𝑗/𝑅𝑔) 

en ajoutant les n relations pour les n solides : 

∑𝑃(𝐸𝑥𝑡 → 𝑆𝑗/𝑅𝑔) =∑
𝑑

𝑑𝑡
𝐸𝑐(𝑆𝑗/𝑅𝑔) 

 

  𝑷(𝑬𝒙𝒕 → 𝚺)  + ∑ 𝑷𝒊(𝑺𝒋, 𝑺𝒌)
𝒏
𝒋,𝒌=𝟏
𝒋<𝒌

=
𝒅

𝒅𝒕
𝑬𝒄(𝚺/𝑹𝒈) 

Remarques :  

• L’équation obtenue à partir du théorème de l’énergie cinétique n’est pas indépendante  

des équations fournies par le PFD. 

 

• Le principe fondamental donne 6 équations et le théorème de l’énergie cinétique une seule, 

donc suffisant seulement pour les problèmes à un degré de mobilité. 

 

• Pour un système de solides, il faut tenir compte des inter-efforts, contrairement au PFD. 

 

• Le théorème de l’énergie est efficace en la présence de plusieurs actionneurs  

à l’intérieur du système isolé. Cependant, rien n’empêche d’associer une méthode 

énergétique et un PFD.  

 

• Puisque le théorème de l’énergie est une variante du PFD, vous devez prendre les mêmes 

précautions que lorsque vous appliquez le PFD : en particulier, vous devez réaliser un bilan 

très soigneux des actions intérieures et extérieures. Un graphe des liaisons faisant apparaître 

toutes les actions, poids et actionneurs compris, est obligatoire. 

 

• LE THEOREME DE L’ENERGIE EST UTILISE POUR DETERMINER L’EQUATION DU MOUVEMENT.  

 

• L’application du PFD, par isolements successifs en utilisant les équations sur les axes  

des mouvements, permet d'obtenir la même chose que le théorème de l’énergie.  



Energétique  A_Roux 

8 
 

4. Rendement 
 

4.1. Définitions : 
 

Un mécanisme transforme une énergie sous 

forme primaire en énergie sous forme 

exploitée.  

Cette transformation entraîne une dissipation 

de l'énergie sous forme dégradée. 

Le rendement mécanique d'un mécanisme est donné par : (𝑡)  =  
|𝑃𝑟é𝑐𝑒𝑝𝑡𝑟𝑖𝑐𝑒|

𝑃𝑚𝑜𝑡𝑟𝑖𝑐𝑒
  𝟎  (𝒕)  𝟏 

 

• Pmotrice = Pm = puissance reçue par le système   𝑃𝑚  0 
 

Un moteur exerce une puissance motrice si le couple a le même signe que   
La pesanteur si le centre de gravité descend. 

 

• Pdissipée = Pd = puissance perdue sous forme de chaleur 𝑃𝑑   0 
 

Forces de frottement dans les liaisons 
 

• Préceptrice = Pr = puissance donnée par le système sous une forme autre que la chaleur 𝑃𝑟  0 
 

Puissance de la pesanteur si le centre de gravité monte 
Puissance d'un moteur si le couple et ω sont de signe contraire ("frein-moteur") 
 

Remarque : La puissance dissipée par un système est : 𝑷𝒅𝒊𝒔𝒔𝒊𝒑é𝒆 = (𝜼 − 𝟏).𝑷𝒆𝒏𝒕𝒓é𝒆 

 

4.2. Calcul du rendement d'un ensemble Σ de solides en mouvement / Rg : 
 

• Le rendement dépend en général du temps. En général, on calcule un rendement moyen pour  

les mouvements cycliques. 

 

• Si toute la puissance est dissipée sous forme de chaleur, le rendement est nul (frein). 

 

• Si le système est composé de plusieurs sous-systèmes, les rendements se multiplient : 

 

𝜂𝑔𝑙𝑜𝑏𝑎𝑙 =
𝑃𝑠
𝑃𝑒
=
𝑃𝑖
𝑃𝑒
.
𝑃𝑠
𝑃𝑖
= 𝜂1. 𝜂2 

On peut généraliser le résultat : 𝜂𝑔𝑙𝑜𝑏𝑎𝑙 =
𝑃𝑠

𝑃𝑒
= ∏ 𝜂𝑖  


